Homotopies for Intersecting Solution Components of Polynomial Systems
نویسندگان
چکیده
We show how to use numerical continuation to compute the intersection C = A∩B of two algebraic sets A and B, where A, B, and C are numerically represented by witness sets. Enroute to this result, we first show how to find the irreducible decomposition of a system of polynomials restricted to an algebraic set. The intersection of components A and B then follows by considering the decomposition of the diagonal system of equations u− v = 0 restricted to {u, v} ∈ A × B. One offshoot of this new approach is that one can solve a large system of equations by finding the solution components of its subsystems and then intersecting these. It also allows one to find the intersection of two components of the two polynomial systems, which is not possible with any previous numerical continuation approach. 2000 Mathematics Subject Classification. Primary 65H10; Secondary 13P05, 14Q99, 68W30.
منابع مشابه
Numerical Homotopies to Compute Generic Points on Positive Dimensional Algebraic Sets
Abstract. Many applications modeled by polynomial systems have positive dimensional solution components (e.g., the path synthesis problems for four-bar mechanisms) that are challenging to compute numerically by homotopy continuation methods. A procedure of A. Sommese and C. Wampler consists in slicing the components with linear subspaces in general position to obtain generic points of the compo...
متن کاملToric Newton Method for Polynomial Homotopies
This paper deenes a generalization of Newton's method to deal with solution paths de-ned by polynomial homotopies that lead to extremal values. Embedding the solutions in a toric variety leads to explicit scaling relations between coeecients and solutions. Toric Newton is a symbolic-numeric algorithm where the symbolic pre-processing exploits the polyhedral structures. The numerical stage uses ...
متن کاملNumerical Evidence for a Conjecture in Real Algebraic Geometry
Homotopies for polynomial systems provide computational evidence for a challenging instance of a conjecture about whether all solutions are real. The implementation of SAGBI homotopies involves polyhedral continuation, at deformation and cheater's ho-motopy. The numerical diiculties are overcome if we work in the true synthetic spirit of the Schubert calculus by selecting the numerically most f...
متن کاملIntroduction to Numerical Algebraic Geometry
In a 1996 paper, Andrew Sommese and Charles Wampler began developing a new area, “Numerical Algebraic Geometry”, which would bear the same relation to “Algebraic Geometry” that “Numerical Linear Algebra” bears to “Linear Algebra”. To approximate all isolated solutions of polynomial systems, numerical path following techniques have been proven reliable and efficient during the past two decades. ...
متن کاملRegeneration homotopies for solving systems of polynomials
We present a new technique, based on polynomial continuation, for solving systems of n polynomials in N complex variables. The method allows equations to be introduced one-by-one or in groups, obtaining at each stage a representation of the solution set that can be extended to the next stage until finally obtaining the solution set for the entire system. At any stage where positive dimensional ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- SIAM J. Numerical Analysis
دوره 42 شماره
صفحات -
تاریخ انتشار 2004